Synopsis of Original Research Paper

Emulsification by Amino Acid-Type Active Interfacial Modifier

Kenichi Sakai

Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science

This report focuses on the preparation and stabilization mechanism of oil-in-water (O/W) type emulsions in the presence of amphiphilic 1:1 stoichiometric complexes of acylglutamic acids (CnGlu) with tertiary alkylamines (CnDMA). Relatively stable emulsions were obtained when C16Glu-C16DMA (or C18Glu-C18DMA), hexadecane, and water were homogenized at 80°C and then stored at room temperature. The gel–liquid crystal phase transition temperature (T_c) of C16Glu-C16DMA and C18Glu-C18DMA dispersed in water was determined to be ca. 39 and 53°C, respectively. This indicates that the complexes form an adsorbed layer at the oil/ water interface during the homogenization process above the T_c , and then change into a gel during storage at room temperature. The gel phase formed at the oil/water interface prevents the oil droplets from coalescing. In contrast, shorter chain analogues (C10Glu-C10DMA and C12Glu-C12DMA) did not yield stable emulsions since their adsorption layers were not able to prevent coalescence of the oil droplets (i.e., the T_c of these analogues was below the room temperature). The dispersion stability of these emulsion systems can also be controlled by changing the aqueous pH.